
Lecture 07: 
Efficient DNN Training, Parameter 

efficient Finetuning, Federated Learning
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Some Notes: Project Proposal
● Due on Mar 19th (1 page)
● You should begin forming teams of 2-3 students and start brainstorming 

project ideas now.
● You should propose something feasible to do.
● Please discuss with me during office hours.
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Some Notes: Midterm
● April 2nd.
● Will cover materials up to lecture 8. 
● Will release the detailed coverage.
● In-class exam.
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Recap
● Distillation
● Low-rank factorization
● Neural Network Search (NAS)
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Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Federated Learning
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Forward Pass for Linear Layer

● The fully-connected layer during the forward propagation can be converted into 
matrix multiplications

X Y=W

X: input maps W: weight filters Y: output maps

B

Cin

Cin

Cout

B

Cout

B: batch size Cin: input channels Cout: output channels 

YB

Cout

Y

Cout

Loss
function…

Layer 1 Layer L
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Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT =  Y    W

Weight Gradient Computation
Cout

B
B

Cin Cout

Cin

● DNN backward propagation involves two matrix multiplications

  XWT
  Y =

Data Gradient Computation
Cout

B Cout

Cin

B

Cin
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Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

   W

Weight Gradient Updates

● DNN backward propagation involves two matrix multiplications

 WCout

Cin

 -η✕  W’ =

Data Gradient Computations

dReLU/dx  Y

Cout

B   Y
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Training Process
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 def forward(self, x):
...

 return

 loss.backward() optimizer.step()
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Forward Pass for Convolutional Layer

Forward Pass
Compute output Y =

 Convolution View

B

H
W

C
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Y=BHW W

Matrix View

● Assume a weight kernel size of 1✖1.

*
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Backward Pass for Convolutional Layer

Backward Pass
Compute Activation 

gradients    X
=B

H
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N
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Backward Pass for Convolutional Layer

 Backward Pass
Compute 

weight 
gradients    W
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Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the 

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training
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Training Data Sampling for Efficiency

● Assume a total b samples are targeted to be picked. We consider a batch setting with K rounds 
where we select b/K points in every round.

● Training the target model with b/K samples, then evaluate the rest of the sample over the model. 
Find the batch with the least confidence score. Append it to the training dataset.

Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei 
Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.



15

Training Data Sampling for Efficiency

● Assume a total b samples are targeted to be 
picked. We consider a batch setting with K 
rounds where we select b/K points in every 
round.

● Training the target model with b/K samples, then 
evaluate the rest of the sample over the model. 
Find the batch with the least confidence score. 
Append it to the training dataset.

Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei 
Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.

DNN

x1 x2 x3 x4

y1 y2 y3 y4

DNN

x2 x3

y2 y3

Round 1 Round 2

0.99 0.11 0.970.27 0.34 0.36

y1 and y4 
are removed
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Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the 

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training
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E2-Train

Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural 
Information Processing Systems 32 (2019).

● A stochastic mini-batch 
dropping strategy is 
proposed.

● Stochastic minibatch 
dropping simply skips 
every mini-batch with a 
default probability of 0.5.

● For some easy dataset, 
this will generate 
negligible impact on 
performance.
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Dynamically Layer Skipping

Wang, Xin, et al. "Skipnet: Learning dynamic routing in convolutional networks." Proceedings of the European 
conference on computer vision (ECCV). 2018.
Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural 
Information Processing Systems 32 (2019).

●                            is the gating function 
for layer i.

● It determines whether to skip to current 
residual block or not.

● During the training, G and residual 
blocks are trained together.

● Loss = acc_loss + computation_loss
● We will skip different layers adaptively                

based on inputs. 
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Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the 

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training
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Pruning during Training

Prune part of 
the weight

Resultant 
model

Train the 
current model

● We can remove the unnecessary weight during the DNN training process.
McDanel, Bradley, Helia Dinh, and John Magallanes. "Accelerating dnn training with structured data gradient pruning." 
2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022.
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How to Find the Winning Tickets?

● Initialized DNN with random weights w0.
● While the sparsity level has not reached:

○ Train the DNN with k epochs until convergence
○ prune p% of the nonzero weights.
○ Reinitialize the remaining weights using the values in w0, finetune the remaining weights for k 

epochs (Rewind).
● Return the weights.

● Iterative Magnitude Pruning (IMP):

● Later work has shown that rewind to wi (i is small) works better for larger networks.

Frankle, Jonathan, et al. "Stabilizing the lottery ticket hypothesis." arXiv preprint arXiv:1903.01611 (2019).
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Weight Rewinding

● The pruned architecture itself, rather than a set of inherited “important” weights, is more crucial to 
the accuracy in the final model, which suggests that in some cases pruning can be useful as an 
architecture search paradigm.

Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018).

Initial DNN with W0 

Training
Prune p% 
weights Retraining

Result weights

Initial DNN with W0 

Training
Prune p% 
weights Rewinding Retraining

Resultant weightsRewind to W0 or Wi 
(i is small)

Conventional iterative pruning

Conventional iterative pruning with weight rewinding
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Early-bird Ticket

You, Haoran, et al. "Drawing early-bird tickets: Towards more efficient training of deep networks." arXiv preprint 
arXiv:1909.11957 (2019).

● LTH shows that there exist winning tickets (small but 
critical subnetworks) for dense, randomly initialized 
networks, that can be trained alone to achieve a 
comparable accuracy to the latter in a similar number 
of iterations.

● The winning tickets can be drawn very early in 
training and with aggressively low-cost training 
algorithms.

● Early-bird tickets can be founded via low-cost training 
schemes (e.g., early stopping and low-precision 
training) at large learning rates
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Early-bird Ticket

You, Haoran, et al. "Drawing early-bird tickets: Towards more efficient training of deep networks." arXiv preprint 
arXiv:1909.11957 (2019).

● To search for the lottery ticket, we can early stop the DNN training.

The mask 
pattern is stable
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Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the 

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training
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DoReFaNet

Zhou, Shuchang, et al. "Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients." arXiv 
preprint arXiv:1606.06160 (2016).

● Linear quantize the 
weights and activations

● Apply stochastic 
quantization for the 
gradients.
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DoReFaNet
● Usually gradients requires far 

more bitwidth than weight and 
activation.

● Usually gradient requires 
stochastic quantization.
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Deterministic and Stochastic Quantization

10

a = 0.2

● To quantize a, conventional linear quantization will make 
q(a) = 0. However, this will cause a bias. 

● With stochastic quantization:

● Stochastic quantization is extremely useful when applying quantization to accelerate DNN 
training. 
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Training DNNs with Hybrid BFP

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing 
Systems 31 (2018).

● Block floating point format achieves a better hardware efficiency and 
comparable representation capability than FP.
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Training DNNs with Hybrid BFP

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing 
Systems 31 (2018).

● Use BFP in all dot-product-based operations present in DNNs (i.e., convolutions, matrix 
multiplications, and outer products), and floating-point representations for all other operations 
(i.e., activations, regularizations, etc).

● To minimize data loss in long-lasting training state, the weights are stored with wider mantissas.

● ResNet-50 trained on ImageNet 
for 90 epochs.

● 8 bit mantissa, 16 bits weight 
seems to achieve comparable 
performance as FP32. A mantissa 
bitwidth of 12 achieves an even 
better performance.

● A tile size of 24
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Two Copies of Weights

  XWT
  Y =

Input data gradient 
Computation

Cout

B Cout

Cin

B

Cin

XT =  Y    W

Weight Gradient Computation
Cout

B
B

Cin Cout

Cin

   W

Weight Gradient Updates

 WCout

Cin

 -η✕  W’ =

● Gradient and forward propagation are 
performed using BFP.

● Weights are updated using FP.
● Two copies of weights are used.



32

Two Copies of Weights

MemoryQ FP
32

B
FP

16

Forward 
pass

Quantized 
Activation

Quantized
Weight

Weight
update

FP32FP32

Backward 
pass

BFP16

L

● Two pieces of copies are needed to be kept in the memory.
● The weight updates are usually performed with higher precision (e.g., FP16).

Memory

Weight
gradient
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Neural Gradients are Near-Lognormal: Improved 
Quantized and Sparse Training

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint 
arXiv:2006.08173 (2020).

● The distribution of neural gradients is approximately lognormal.
● We can use lognormal regression to determine the optimal quantization 

setting (e.g., bitwidth, quantization interval).
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Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Federated Learning
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Memory Consumption During Training

1x

Normalized Number of Parameters 
Storage during DNN Training

1.67x

6.6x

13.4x

ResNet-18

ResNet-34

ResNet-50

VGG-16

Activation
Weight

Output

Memory

Layer 0

Input

Memory

Layer 1Layer 1

Output

Layer 0

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Forward pass Backward pass

● The memory footprint grows proportional with the layer depth. The activation in the early DNN 
layers need to be stored for a long time.

● Activations consume most of the memory space, approximately 13 times larger than the 
weights on average. 

Batch size = 48
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Memory Efficiency During Training

x2

y2

+

x1

+

y1

F2

F1

 Residual Architecture

+

x

y

F

 Reversible Architecture

● A reversible residual network (RevNet) is a variant of the canonical residual 
neural network (ResNet). 

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Gomez, Aidan N., et al. "The reversible residual network: Backpropagation without storing activations." Advances in neural 
information processing systems 30 (2017).
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Memory Efficiency During Training

Reversible
Block

Weight 
update

1. Recompute
the input

y

x

Reversible
Block

gout

gin

Reversible
Block

gout

2. Compute 
input gradient

3. Compute weight 
gradient and update

x

x2

y2

+

x1

+

y1

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Architecture
OperationsOutput

Reversible
Block

Reversible
Block

Linear

…

Input

F2

F1

● The backward pass computations can be performed without storing the input activations.
● Given the output y, the input activations are first recomputed. Afterwards, the input and weight 

gradients are computed with standard backward pass operations.
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BIM: Block-Wise Local Learning with Masked 
Image Modeling

● Local exist is introduced during the 
training process.

● The intermediate results can be discarded 
once the training process for the current 
layer is complete.

Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image 
Modeling." arXiv preprint arXiv:2311.17218 (2023).
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BIM: Block-Wise Local Learning with Masked 
Image Modeling

● Once the parameter updates in encoder block i and decoder block i are finished, 
all intermediate features stored in the buffer, except for xi , can be cleared from 
memory, preserving them for future use.

Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image 
Modeling." arXiv preprint arXiv:2311.17218 (2023).
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Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Federated Learning
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Parameter-efficient Finetuning (PEFT)
● Large models (LMs), often consisting of billions of parameters, require vast 

amounts of computational resources for execution. 
● The expansive scale and computational demands pose considerable 

challenges when customizing them for particular downstream tasks.
● To better adapt the LMs over the downstream tasks, we can finetune a small 

portion of the LM parameters. This will make LMs achieve great performance 
over the downstream tasks while minimizing the training cost.

● Some of the popular PEFT Algorithms:
○ LoRA
○ Adapter
○ BitFit
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Parameter-Efficient Transfer Learning for NLP 

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on machine learning. 
PMLR, 2019.

● We add the adapter module twice to each 
Transformer layer.

● The adapter consists of a bottleneck 
which contains few parameters relative to 
the attention and feedforward layers in 
the original model. The adapter also 
contains a skip-connection.

● The learnable parameters contributes to 
around 0.5 − 8% of the parameters of the 
original model.
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BitFit

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for 
transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).

● BitFiT is a sparse-finetuning method 
where only the bias-terms of the 
model are being modified.

● Applying BitFit on pre-trained BERT 
models is competitive with (and 
sometimes better than) fine-tuning 
the entire model.

● Bias parameters make up 0.09% of 
the total number of parameters in 
BER.
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Finetune Bias is Cheap

Cai, Han, et al. "Tinytl: Reduce activations, not trainable parameters for efficient on-device learning." arXiv preprint 
arXiv:2007.11622 (2020).

X Y=WB

Cin

Cin

Cout

B

Cout

+ β

● Updating the bias does not require buffering any intermediate results 
during the forward pass of DNN training.
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Low-rank Adaptation (LoRA)

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Q K VLo
R

A

D
ecoderSA

MLP

A
B

● Only the weights within the red blocks 
are updated.

● Assume the weight matrix has a 
dimension of k✕k, A and B have a size of 
k✕r and r✕k, where r << k (e.g., r=4).

● BA can be merged with the original 
weight W0, leading to no additional 
computational and storage cost.
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Low-rank Adaptation (LoRA)

● LoRA achieves better results than Adapter and BitFit.
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Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Federated Learning
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Federated Learning
● Training data: (x1,y1), (x2,y2), (x3,y3), (x4,y4)

Train

(x1,y1) (x2,y2) (x3,y3) (x4,y4)
Train Train Train

||y1-x1||2 ||y2-x2||2 ||y3-x3||2 ||y4-x4||2

● Non-iid training data distribution
● Heterogeneity among the edge 

devices
● Communication error
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Federated Learning

Central 
node

Edge
nodes

Aggregate

Train Train Train Train

● Federated learning is a machine learning technique 
that allows the training of models across multiple 
decentralized nodes holding local data samples, 
without exchanging their data. 

● This approach enhances privacy, user can train the 
powerful DNN model without sharing the dataset.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Global 
model

● A global model is initialized on the central node and sent 
to all participating nodes .

Step 1

For each i

Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Global 
model

Step 2

● Each node i trains the global model locally 
using its own data for a few epochs. 

● The length of local training process may vary.

Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

● Local updates are sent from each node to the central 
node. 

Aggregate

Step 3
Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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FedAvg

Aggregate

Step 4
● The central node aggregates the local updates 

to update the global model.
Central 
node

Edge
nodes

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial 
intelligence and statistics. PMLR, 2017.
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Federated Learning Problems: Non-IID
● However, in FL, the data distributed across different devices or clients is not drawn from 

the same statistical distribution. 

● Unlike the scenario distributed training, where the training data are randomly distributed. 
For FL, the data stored in each device is highly biased.

 
Cloud

User
devices

Aggregate● This may lead to significant accuracy degradation 
for the global model.
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Federated Learning Problems: Heterogeneity

Cloud

User
devices

Aggregate

● Different edge device may have different 
processing speed.

● This will cause the total latency of each training 
round bottlenecked by the straggler, leading to a 
slow convergence of the training process.
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Federated Learning Problems: 
Communication

Cloud

User
devices

Aggregate

Comm 
error

● The communication between edge devices and 
central cloud may incur transmission loss or error.

● This will impact the training latency and accuracy.
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Federated Learning Problems: Privacy

Cloud

User
devices

Aggregate

● The attacker can leverage the transmitted gradient 
to reconstruct the original input training data.

● This will lead to privacy leakage.
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Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● The training sets are evenly partitioned 
into 10 clients. 

● For IID setting, each client is randomly 
assigned a uniform distribution over 10 
classes. 

● For non-IID setting, the data is sorted 
by class and divided to create two 
extreme cases: (a) 1-class non-IID, 
where each client receives data 
partition from only a single class, and 
(b) 2-class non-IID, where the sorted 
data is divided into 20 partitions and 
each client is randomly assigned 2 
partitions from 2 classes.
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Federated Learning with Non-iid Data

Zhao, Yue, et al. "Federated learning with non-iid data." arXiv preprint arXiv:1806.00582 (2018).

● We propose a data-sharing strategy to improve FedAvg with non-IID data by creating a small 
subset of data which is globally shared between all the edge devices. 

● Experiments show that test accuracy can be increased by ~30% on CIFAR-10 dataset with only 
5% globally shared data.
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FedProx

● We add an extra term to minimize the l2 
distance between the initial weight wt and 
the learned weight w. 

● This loss ensures that the learnt w is not 
too different from the original w.

Li, Tian, et al. "Federated optimization in heterogeneous networks." Proceedings of Machine learning and systems 2 
(2020): 429-450.
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Presentation
● FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural 

Architecture Search (Monish)
● Neural gradients are near-lognormal: improved quantized and sparse training 

(Rahil)
● Lora: Low-rank adaptation of large language models (Minghui)
● COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 

Training (Yash)
● Federated optimization in heterogeneous networks (Rujuta)

https://docs.google.com/presentation/d/1WcGtsrat7B9lMfyUpzS7eubB-t25zONZHitnXSd79ns/edit
https://docs.google.com/presentation/d/1WcGtsrat7B9lMfyUpzS7eubB-t25zONZHitnXSd79ns/edit
https://docs.google.com/presentation/d/1CThecbwt9-R0KJhZAvpaKVkALaSPc_TqqQ1ExenUauQ/edit?usp=sharing
https://docs.google.com/presentation/d/1mrl06DH9bZstuwrnN0_cILOblvzEj-xqHFWxwN8Rugc/edit?usp=sharing
https://docs.google.com/presentation/d/1JUihkubwdjnggAZn-zo7wb25xND-vUfecrLUesCsx6k/edit?usp=sharing
https://docs.google.com/presentation/d/1JUihkubwdjnggAZn-zo7wb25xND-vUfecrLUesCsx6k/edit?usp=sharing
https://docs.google.com/presentation/d/149vfnNa-Hf2S1JNe_5W3o9UJSlWAckYTazvH0iSK8kA/edit#slide=id.p1
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Project Proposal
● Due on Mar 19th (1 page)

○ Project summary (1 paragraph)
○ Project plan (1 paragraph, gantt chart (optional))
○ Individual responsibilities (1 paragraph) 

● You should begin forming teams of 2-3 students and start brainstorming 
project ideas now.

● Please discuss with me during office hours.
● You should propose something feasible to do.

○ Difficulty, Resource,…
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Some Example

● Study the pruning/quantization behavior for CNN/Diffusion model/Large 
Models.

● Distillation using Large Model.
● Low precision Parameter efficient finetuning.
● Federated learning with Large Model.
● Hardware simulation on Large Model.


